کسب در آمد ماهیانه

برای کسانی که به دنبال آینده ی درخشانند

کسب در آمد ماهیانه

برای کسانی که به دنبال آینده ی درخشانند

فناوری نانو > «الگوریتم ها» و «تراشه» های کوانتومی

حاسبات کوانتومی یک زمینه جدید و امیدوارکننده با قابلیت بالقوه بالای محاسباتی است، اگر در مقیاس بزرگ ساخته شود. چندین چالش عمده در ساخت رایانه کوانتومی بزرگ مقیاس، وجود دارد: بررسی و تصدیق محاسبات و معماری سیستم آن.

قدرت محاسبات کوانتومی در قابلیت ذخیره‌سازی یک حالت پیچیده در قالب یک "بیت" ساده نهفته است.

روش‌های نوینی به منظور ساخت مدارهای منطقی سطح پائین، سوئیچ‌کننده‌ها، سیم‌ها، دروازه‌های اطلاعاتی، تحت پژوهش و توسعه قرار گرفته‌اند که کاملاً متفاوت از تکنیک‌های حاضرند و به طور عمیقی ساخت مدارهای منطقی پیشرفته‌ را تحت تأثیر قرار می‌دهند. از برخی از دیدگاه‌ها، در آینده‌ای نزدیک، در حدود 20 سال آینده، طراحان مدارهای منطقی ممکن است به مدارهائی دسترسی پیدا کنند که یک بیلیون بار از مدارهای حال حاضر سریعترند.

مسائلی نظیر طراحی، بکارگیری،‌ تعمیر و نگهداری و کنترل این ابرسیستم‌ها به گونه‌ای که پیچیدگی بیشتر به کارآئی بالاتری منتهی شود، زمانی که سیستم‌های منطقی شامل 107، سوئیچ باشد،مهم است. به سختی ممکن است که آنها را به طور کامل و بی‌نقص،‌ بسازیم، بنابر این رسیدگی و اصلاح عملگرهای شامل بررسی هزاران منبع خواهد بود. از این رو طراحی یک سیستم با فضای حداقل، حداقل هزینه در زمان و منابع، یک ارزش است. چنین سیستمی می‌تواند در قالب "توزیع یافته"، "موازی" ویا در یک چهارچوب "سلسله مراتبی" قرار گیرد.

سخت‌افزارها و مدارهای منطقی راه درازی را پیموده‌اند. ترانزیستورهای استفاده شده در یک مدار ساده CPU چندین میلیون بار کوچکتر از ترانزیستور اصلی ساخته شده درسال 1947 است. اگر یک ترانزیستور حال حاضر با تکنولوژی 1947 ساخته شود نیازمند یک کیلومتر مربع سطح می‌باشد (قانون مور)، در حالی که در 10 الی 20 سال آینده تکنولوژی موفق به گشودن راهی جهت تولید مدارهای منطقی 3 بعدی خواهد شد.

در این میان، چندین پرسش سخت و پژوهشی که در آکادمی‌ها وصنعت به آن پرداخته می‌شود وجود دارد:

1. گرفتن پیچیدگی‌ها در تحلیل روش‌های تولید SWITCH ،در روش‌های متولد شده به منظور مدل‌سازی چگونگی کارآئی آنها، در مدارهای منطقی مورد نیاز مهندسان، و امتیازات روش‌های نوین فناورانه بر روش های کلاسیک.
2. لحاظ کردن ملاحظاتی مبنی بر تعداد سوئیچ‌ها در واحد سطح و حجم در درون ابزار (گنجایش)، تعداد نهائی سوئیچ‌ها در درون ابزار (حجم)، شرایط حدی عملگرها، سرعت عملگرها، توان مورد نیاز، هزینه تولید و قابلیت اعتماد به تولید و دوره زمانی چرخه عمر آن.
پاسخ این تحلیل ها جهت پژوهش‌ها را به سمت روش‌های بهتر تولید سوییچ، هدایت خواهد کرد. ودر نهایت یافتن این که چگونه یک روش ویژه در بهترین شکلش مورد استفاده قرار خواهد گرفت و نیز تحلیل و تباین روش‌های مختلف تولید.
3. حرکت به سمت طراحی ظرفیت ابزار، جهت استفاده مؤثر از 1017 ترانزیستور یا سوئیچ است. چنین طراحی‌هائی در مقیاس‌های مطلوب ، حتی بی‌شباهت در مقایسه با افزایش ظرفیت ابزارها خواهد بود.
4. طراحی‌های قویتر و ابزارهای بررسی قوی‌تر به منظور طراحی "مدارهای منطقی" با چندین مرتبه مغناطیسی بزرگتر و پیچیده‌تر.
5. طراحی پروسه‌های انعطاف‌پذیرتر جهت مسیر تولید از مرحله طراحی منطقی،‌ آزمایش و بررسی، تا بکارگیری در سخت‌افزار.

پروسه‌ها می‌بایستی به قدری انعطاف‌پذیر باشند که:

الف) توسعه اشتراکی درطراحی، آزمایش و ساخت ،به گونه‌ای که هیچ یک از این گام‌ها تثبیت شده نباشد.

ب) توسعه طراحی، و بررسی به منظور کاوش یک روش نوین ساخت با هدف تقویت نقاط قوت و کم کردن نقاط ضعف .هر نوع از سیستم نانویی که توسط طراحان ساخته می‌شود می‌بایستی صحت عملکرد آن تضمین شود.

شاخص مقیاس حقیقی و لایه‌های افزوده شده نامعین در سیستم‌های نانوئی،‌ نیازمند انقلاب در طراحی سیستم‌ها و الگوریتم‌ها است. روش‌هائی که در زیر معرفی می‌شود، الگوریتم‌هائی هستند که به صورت بالقوه قادرند مسأله پیچیدگی محاسبات را کاهش دهند.

1) بررسی مقیاسی سیستم‌های نانوئی:

مانع بزرگی به نام« بررسی چند میلیون ابزار نانومقیاس»، نیاز به روش‌های انقلابی به منظور بررسی سیستم‌هائی که ذاتاً بزرگتر، پیچیده‌تر و دارای درجات نامعینی پیچیده‌تری هستند، را روشن می‌کند. در ابتدا مروری کوتاه خواهیم داشت بر ضرورت "آزمایش مدل."[1]

آزمایش مدل از روش‌های پذیرفته شده و رسمی در حوزه بررسی روش‌های ساخت است. این حوزه شامل کاوش فضای طراحی است به منظور دیدن این نکته که خواص مطلوب در مدل طراحی شده حفظ شده باشد، به گونه ای که اگر یکی ازاین خواص، مختل شده باشد،‌ یک""Counter Example تولید شود.

Model Checking Symbolic بر مبنای [2]ROBDDها یک نمونه از این روش‌ها است.

بهرحال، BDDها به منظور حل مسائل ناشی از خطای حافظه بکار گرفته می‌شوند و برای مدارات بزرگتر با تعداد حالات بزرگتر و متغیرتر مقیاس پذیر نمی‌باشند.

دو روش عمده برای حل این مسأله وجود دارد:

یک روش حل مبتنی بر محدود کردن آزمایش کننده مدل[3] به یک مدار unbounded، است که به نام "unbounded model checking" یا UMC نامیده می‌شود،‌ به گونه‌ای که خواص آزمایش شده به تعداد دلخواه از Time-Frame" "ها وابستگی ندارد.

روش دیگر مبتنی بر مدل "مدار محدود[4]" استوار است که به نام[5] BMC نامیده می‌شود در این روش بررسی مدل با تعداد ویژه و محدودی از Time-Frame" "ها صورت می‌گیرد.

ابتدا در مورد فرمولاسیون UMC که مبتنی بر "رسیدن به سرعت در مراتب مغناطیسی" است و به وسیله تکنیک‌های مقیاس پذیر"BMC" پیروی می‌شود،‌ بحث می‌کنیم و بالاخره این که چهارچوبی را برای بررسی و لحاظ کردن درجات نامعینی به سیستم، معرفی می‌کنیم.

2- "UMC" مقیاس‌پذیر:

مزیت"UMC" بر "BMC" در کامل بودن آن است. روش "UMC" می‌تواند خواص مدل را همانگونه که هست لحاظ کند زیرا این روش مبتنی بر قابلیت آزمایش به کمک نقاط ثابت است. عیب این روش در این است که""ROBDD کاملاً به مرتبه متغیرها حساس است. ابعاد BDD می‌تواند غیرمنطقی باشد اگر مرتبه متغیرها بد انتخاب شود. در پاره‌ای از موارد (نظیر یک واحد" ضرب") هیچ مرتبه متغیری به منظور رسیدن به یک ROBDD کامل که نمایشگر عملکرد مدار باشد،‌ وجود ندارد. به علاوه، برای خیلی از شواهد مسأله،‌ حتی اگر ROBDD برای روابط انتقال ساخته شود،‌ حافظه می‌تواند هنوز در خلال عمل کمیت‌گذاری، بترکد.

پژوهش‌های اخیر بر بهبود الگوریتم‌های BDD جهت کاهش انفجار حافظه استوار و استفاده از خلاصه نگاری و تکنیک‌های کاهش، جهت کاهش اندازه مدل، تمرکز یافته‌اند.

"SAT Solver"ها ضمیمه BDD ها می‌شوند. روابط انتقال یک سیستم در قالب K، Time-Frame"" باز می‌شود. "SAT" هابه ابعاد مسأله کمتر حساسند. اما به هر حال، SATها دارای یک محدودیت هستند و آن این که خواص یک مدار را با تعداد محدودی (K)، می‌سنجند.

اگر هیچ Countervecample در K، Time-Frame یافت نشد، هیچ تضمینی برای همگرائی حل مسأله وجود ندارد.

BMC"" در مقایسه با UMC"" مبتنی بر"BDD" ،کامل نمی‌باشد. این روش می‌تواند فقط "Counter Example"ها را بیابد و قادر به محاسبه خواص نمی‌باشد مگر آن که یک حد بر روی حداکثر اندازه Counter Example"" تعیین شود.

روشی برای ترکیب SAT-Solver و BDD به صورت فرمول CNF به کار گرفته شده است.
نظرات 0 + ارسال نظر
برای نمایش آواتار خود در این وبلاگ در سایت Gravatar.com ثبت نام کنید. (راهنما)
ایمیل شما بعد از ثبت نمایش داده نخواهد شد